LPA1 receptor

Target id: 272

Nomenclature: LPA1 receptor

Family: Lysophospholipid (LPA) receptors

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates.  » Email us

   GtoImmuPdb view: OFF :     Currently no data for LPA1 receptor in GtoImmuPdb

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 364 9q31.3 LPAR1 lysophosphatidic acid receptor 1 6
Mouse 7 364 4 32.2cM Lpar1 lysophosphatidic acid receptor 1 6
Rat 7 364 5q24 Lpar1 lysophosphatidic acid receptor 1 1
Previous and Unofficial Names
EDG2 | GPR26 | VZG1 | endothelial differentiation gene 2, lysophosphatidic acid G-protein-coupled receptor, 2 | LPA receptor 1 | Lpar1 | lysophosphatidic acid receptor Edg-2
Database Links
Specialist databases
GPCRDB lpar1_human (Hs), lpar1_mouse (Mm), lpar1_rat (Rn)
Other databases
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
RefSeq Nucleotide
RefSeq Protein
SynPHARM
UniProtKB
Wikipedia
Selected 3D Structures
Image of receptor 3D structure from RCSB PDB
Description:  Crystal Structure of Human Lysophosphatidic Acid Receptor 1 in complex with ONO-3080573.
PDB Id:  4Z36
Ligand:  ONO-3080573
Resolution:  2.9Å
Species:  Human
References:  5
Image of receptor 3D structure from RCSB PDB
Description:  Crystal Structure of Human Lysophosphatidic Acid Receptor 1 in complex with ONO-9910539.
PDB Id:  4Z35
Ligand:  ONO-9910539
Resolution:  2.9Å
Species:  Human
References:  5
Image of receptor 3D structure from RCSB PDB
Description:  Crystal Structure of Human Lysophosphatidic Acid Receptor 1 in complex with ONO9780307.
PDB Id:  4Z34
Ligand:  ONO-9780307
Resolution:  3.0Å
Species:  Human
References:  5
Natural/Endogenous Ligands
LPA

Download all structure-activity data for this target as a CSV file

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
LPA Mm Full agonist 7.9 – 8.3 pEC50 10,20,25
pEC50 7.9 – 8.3 (EC50 1.17x10-8 – 5x10-9 M) [10,20,25]
NAEPA Mm Partial agonist 6.7 pEC50 25
pEC50 6.7 (EC50 1.97x10-7 M) [25]
oleoyl-thiophosphate Hs Partial agonist 6.7 pEC50 11
pEC50 6.7 (EC50 1.93x10-7 M) [11]
oleoyl-thiophosphate Mm Partial agonist 6.7 pEC50 23
pEC50 6.7 (EC50 1.93x10-7 M) [23]
2-oleoyl-LPA Hs Agonist 6.7 pEC50 3
pEC50 6.7 [3]
T13 Mm Partial agonist 6.3 pEC50 23,25
pEC50 6.3 (EC50 5x10-7 M) [23,25]
alkyl OMPT Hs Agonist 6.1 – 6.2 pEC50 32
pEC50 6.1 – 6.2 [32]
View species-specific agonist tables
Agonist Comments
Breakdown of affinities for various LPA species [33] :
LPA sp.pEC50
18:17.73 ± 0.12
14:07.26 ± 0.11
16:07.32 ± 0.16
17:06.44 ± 0.05
18:26.84 ± 0.03
18:36.45 ± 0.06
20:05.44 ± 0.24
20:46.85 ± 0.22
C18 6.22 ± 0.05
C18:1 8.04 ± 0.18
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
VPC32183 Hs Antagonist 7.8 pKi 19
pKi 7.8 [19]
syn-BrP-LPA Hs Antagonist 6.6 pKi 42
pKi 6.6 (Ki 2.73x10-7 M) [42]
anti-BrP-LPA Hs Antagonist 6.1 pKi 42
pKi 6.1 (Ki 7.52x10-7 M) [42]
BrP-LPA Hs Antagonist 6.1 pKi 42
pKi 6.1 (Ki 8.05x10-7 M) [42]
VPC12249 Mm Antagonist 5.2 – 6.9 pKi 21
pKi 5.2 – 6.9 (Ki 5.7x10-6 – 1.37x10-7 M) [21]
dioctanoylglycerol pyrophosphate Hs Antagonist 5.2 – 5.2 pKi 13,25
pKi 5.2 – 5.2 (Ki 7x10-6 – 6.6x10-6 M) [13,25]
AM966 Mm Antagonist 7.7 pEC50 36
pEC50 7.7 [36]
BMS-986020 Hs Antagonist 8.9 pIC50
pIC50 8.9
ONO-3080573 Hs Antagonist 8.0 pIC50 5
pIC50 8.0 (IC50 1.1x10-8 M) [5]
Description: FLIPR intracellular calcium mobilisation assay
ONO-9910539 Hs Antagonist 7.7 pIC50 5
pIC50 7.7 (IC50 2.2x10-8 M) [5]
Description: FLIPR intracellular calcium mobilisation assay
ONO-9780307 Hs Antagonist 7.6 pIC50 5
pIC50 7.6 (IC50 2.7x10-8 M) [5]
Description: FLIPR intracellular calcium mobilisation assay
AM966 Hs Antagonist 6.7 – 7.8 pIC50 35
pIC50 6.7 – 7.8 (IC50 1.99x10-7 – 1.58x10-8 M) [35]
VPC32183 Mm Antagonist 7.0 pIC50 19
pIC50 7.0 (IC50 1.09x10-7 M) [19]
ONO-7300243 Hs Antagonist 6.8 pIC50 37
pIC50 6.8 (IC50 1.6x10-7 M) [37]
Ki16425 Mm Antagonist 6.6 – 6.9 pIC50 29
pIC50 6.6 – 6.9 (IC50 2.5x10-7 – 1.3x10-7 M) [29]
syn-BrP-LPA Hs Antagonist 6.2 pIC50 42
pIC50 6.2 (IC50 6.48x10-7 M) [42]
AM095 Mm Antagonist 6.1 pIC50 35
pIC50 6.1 (IC50 7.78x10-7 M) [35]
AM095 Hs Antagonist 6.0 – 6.1 pIC50 35
pIC50 6.0 – 6.1 [35]
anti-BrP-LPA Hs Antagonist 5.7 pIC50 42
pIC50 5.7 (IC50 2.079x10-6 M) [42]
BrP-LPA Hs Antagonist 5.3 pIC50 42
pIC50 5.3 (IC50 4.52x10-6 M) [42]
VPC32179 Hs Antagonist - - 19
[19]
View species-specific antagonist tables
Antagonist Comments
Although we have recorded the in vitro, pIC50 for AM966 from the LPA-stimulated intracellular calcium release from CHO cells expressing hLPA1 receptors the same paper also reports the it inhibited LPA-induced chemotaxis (pIC50= 6.7) of human IMR-90 lung fibroblasts [36].

pKi of AM966 in presence of following LPA species [33]:
LPA sp.pKi
18:17.85 ± 0.03
16:07.73 ± 0.05
17:07.77 ± 0.02
18:27.86 ± 0.02
C18:1 7.78 ± 0.02
Primary Transduction Mechanisms
Transducer Effector/Response
Gi/Go family
Gq/G11 family
G12/G13 family
Adenylate cyclase inhibition
Phospholipase C stimulation
Phospholipase A2 stimulation
Other - See Comments
Comments:  In general LPA1 is known to induce many responses including cell proliferation and survival, cell migration, and cytoskeletal changes; altered cell-cell contact through serum-response element activation, Ca2+ mobilization, and adenylyl cyclase inhibition; and activation of mitogen-activated protein kinase, phospholipase C, Akt, and Rho pathways. For a detailed review please see [4].
References:  15,24
Tissue Distribution
Brain, uterus, testis, lung, small intestine, heart, stomach, kidney, spleen, thymus, placenta, and skeletal muscle
Species:  Human
Technique:  Northern blot
References:  2
Kidney,spleen, thymus (not in liver)
Expression level:  Low
Species:  Mouse
Technique:  Northern Blot
References:  40
Embryonic cerebral dorsal telencephalon (cortical ventricular zone (VZ))
Expression level:  High
Species:  Mouse
Technique:  In situ hybridisation and RT-PCR, Western Blot
References:  9,20
Brain, heart, lung, and testis
Expression level:  High
Species:  Mouse
Technique:  Northern blot
References:  40
Brain, uterus, testis, lung, small intestine, heart, stomach, kidney, spleen, thymus, placenta, and skeletal muscle, embryonic brain, embryonic dorsal olfactory bulb, embryonic limb buds, embryonic craniofacial region, embryonic somites, and embryonic genital tubercle
Species:  Mouse
Technique:  In situ hybridisation, Northern blot
References:  7,20,30
Abdominal/thoracic aortic vascular smooth muscle cell
Expression level:  High
Species:  Mouse
Technique:  qRT-PCR
References:  8
In the postnatal murine nervous system: oligodendrocytes and Schwann cells, the myelinating cells of the central and peripheral nervous systems
Species:  Rat
Technique:  In situ hybridisation, histochemistry, immunocytochemistry, Northern blot
References:  1
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Actin rearrangement, stress fibre formation, and cell rounding
Species:  Rat
Tissue:  Neuroblastoma (B103 cell line)
Response measured:  Cell rounding upon receptor stimulation by LPA ligand
References:  15,24
Physiological Functions
Increased cell proliferation and/or survival
Species:  Mouse
Tissue:  Schwann cells
References:  26,38
Increase in neuronal differentiation
Species:  Mouse
Tissue:  Brain
References:  16,26
Actin rearrangement and alteration of cortical neuroblast morphology in vitro and in vivo
Species:  Mouse
Tissue:  Neuroprogenitors, Schwann cells
References:  14,17-18,39
Cell migration
Species:  Mouse
Tissue:  Cortical neuroprogenitor
References:  18
Inhibition of adipocyte differentiation
Species:  Mouse
Tissue:  Adipose
References:  34
Contraction
Species:  Mouse
Tissue:  Aortic vascular smooth muscle.
References:  8
Physiological Consequences of Altering Gene Expression
Phenotypes include: (50%) neonatal lethality; impaired suckling in neonatal pups; smaller size pups; craniofacial dysmorphism; increased apoptosis. Alterations in signaling characteristics are also observed.
Species:  Mouse
Tissue: 
Technique:  Gene knockout
References:  7
Mice with receptor knockout develop 50% perinatal lethality due to defective olfaction and impaired suckling behavior, decreased body size, craniofacial dysmorphism with blunted snouts, and increased apoptosis in sciatic nerve Schwann cells.
Species:  Mouse
Tissue:  Brain
Technique:  Gene knockouts
References:  7,20
Malaga receptor knockout have negligible perinatal lethality, reduced NPC proliferation, increased cerebral cortical apoptosis, decreased cortical size, and premature expression of neuronal markers, reduced neurogenesis in dentate gyrus, inhibition of fear extinction.
Species:  Mouse
Tissue:  Brain
Technique:  Gene knockouts
References:  12,27,31
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Lpar1tm1Mcox Lpar1tm1Mcox/Lpar1tm1Mcox
B6.129P2-Lpar1
MGI:108429  MP:0005332 abnormal amino acid level PMID: 14697676 
Lpar1tm1Mcox Lpar1tm1Mcox/Lpar1tm1Mcox
B6.129P2-Lpar1
MGI:108429  MP:0000428 abnormal craniofacial morphology PMID: 14697676 
Lpar1tm1Jch Lpar1tm1Jch/Lpar1tm1Jch
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:108429  MP:0001106 abnormal Schwann cell morphology PMID: 11087877 
Lpar1tm1Jch Lpar1tm1Jch/Lpar1tm1Jch
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:108429  MP:0002651 abnormal sciatic nerve PMID: 11087877 
Lpar1tm1Mcox Lpar1tm1Mcox/Lpar1tm1Mcox
B6.129P2-Lpar1
MGI:108429  MP:0005322 abnormal serotonin concentration PMID: 14697676 
Lpar1tm1Jch Lpar1tm1Jch/Lpar1tm1Jch
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:108429  MP:0001436 abnormal suckling behavior PMID: 11087877 
Lpar1tm1Mcox Lpar1tm1Mcox/Lpar1tm1Mcox
B6.129P2-Lpar1
MGI:108429  MP:0001255 decreased body height PMID: 14697676 
Lpar1tm1Mcox Lpar1tm1Mcox/Lpar1tm1Mcox
B6.129P2-Lpar1
MGI:108429  MP:0006086 decreased body mass index PMID: 14697676 
Lpar1tm1Jch Lpar1tm1Jch/Lpar1tm1Jch
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:108429  MP:0001265 decreased body size PMID: 11087877 
Lpar1tm1Mcox Lpar1tm1Mcox/Lpar1tm1Mcox
B6.129P2-Lpar1
MGI:108429  MP:0009142 decreased prepulse inhibition PMID: 14697676 
Lpar1tm1Jch Lpar1tm1Jch/Lpar1tm1Jch
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:108429  MP:0001107 decreased Schwann cell number PMID: 11087877 
Lpar1tm1Jch Lpar1tm1Jch/Lpar1tm1Jch
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:108429  MP:0010025 decreased total body fat amount PMID: 11087877 
Lpar1tm1Jch Lpar1tm1Jch/Lpar1tm1Jch
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:108429  MP:0000914 exencephaly PMID: 11087877 
Lpar1tm1Jch Lpar1tm1Jch/Lpar1tm1Jch
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:108429  MP:0001914 hemorrhage PMID: 11087877 
Lpar1tm1Mcox Lpar1tm1Mcox/Lpar1tm1Mcox
B6.129P2-Lpar1
MGI:108429  MP:0001402 hypoactivity PMID: 14697676 
Lpar1tm1Mcox Lpar1tm1Mcox/Lpar1tm1Mcox
B6.129P2-Lpar1
MGI:108429  MP:0001906 increased dopamine level PMID: 14697676 
Lpar1tm1Mcox Lpar1tm1Mcox/Lpar1tm1Mcox
B6.129P2-Lpar1
MGI:108429  MP:0004831 long incisors PMID: 14697676 
Lpar1tm1Jch Lpar1tm1Jch/Lpar1tm1Jch
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:108429  MP:0002058 neonatal lethality PMID: 11087877 
Lpar1tm1Jch Lpar1tm1Jch/Lpar1tm1Jch
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:108429  MP:0001300 ocular hypertelorism PMID: 11087877 
Lpar1tm1Mcox Lpar1tm1Mcox/Lpar1tm1Mcox
B6.129P2-Lpar1
MGI:108429  MP:0001300 ocular hypertelorism PMID: 14697676 
Lpar1tm1Mcox Lpar1tm1Mcox/Lpar1tm1Mcox
B6.129P2-Lpar1
MGI:108429  MP:0002081 perinatal lethality PMID: 14697676 
Lpar1tm1Jch Lpar1tm1Jch/Lpar1tm1Jch
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:108429  MP:0001732 postnatal growth retardation PMID: 11087877 
Lpar1tm1Jch Lpar1tm1Jch/Lpar1tm1Jch
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:108429  MP:0002082 postnatal lethality PMID: 11087877 
Lpar1tm1Mcox Lpar1tm1Mcox/Lpar1tm1Mcox
B6.129P2-Lpar1
MGI:108429  MP:0002082 postnatal lethality PMID: 14697676 
Lpar1tm1Jch Lpar1tm1Jch/Lpar1tm1Jch
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:108429  MP:0000445 short snout PMID: 11087877 
Lpar1tm1Mcox Lpar1tm1Mcox/Lpar1tm1Mcox
B6.129P2-Lpar1
MGI:108429  MP:0000445 short snout PMID: 14697676 
Gene Expression and Pathophysiology Comments
Mouse models indicate that overactivation of LPA1 during fetal development initiates hydrocephalus in vivo [41], and can cause prenatal intracerebral hemorrhage leading to schizophrenia-like brain and behavioral changes [28]. Also in mice, fetal hypoxia activates LPA1 signaling, inhibition of which reduces hypoxia-induced brain injury. These findings may point to potential treatments for fetal hypoxia-induced CNS disorders or for other forms of hypoxic brain injury [22].
Biologically Significant Variant Comments
There is a splice variant (mrec 1.3) that results in an 18-amino acid deletion of the N terminus, but its biological significance is unknown [6].

References

Show »

1. Allard J, Barrón S, Diaz J, Lubetzki C, Zalc B, Schwartz JC, Sokoloff P. (1998) A rat G protein-coupled receptor selectively expressed in myelin-forming cells. Eur. J. Neurosci., 10 (3): 1045-53. [PMID:9753172]

2. An S, Bleu T, Hallmark OG, Goetzl EJ. (1998) Characterization of a novel subtype of human G protein-coupled receptor for lysophosphatidic acid. J. Biol. Chem., 273 (14): 7906-10. [PMID:9525886]

3. Bandoh K, Aoki J, Taira A, Tsujimoto M, Arai H, Inoue K. (2000) Lysophosphatidic acid (LPA) receptors of the EDG family are differentially activated by LPA species. Structure-activity relationship of cloned LPA receptors. FEBS Lett., 478 (1-2): 159-65. [PMID:10922489]

4. Choi JW, Herr DR, Noguchi K, Yung YC, Lee CW, Mutoh T, Lin ME, Teo ST, Park KE, Mosley AN, Chun J. (2010) LPA receptors: subtypes and biological actions. Annu. Rev. Pharmacol. Toxicol., 50: 157-86. [PMID:20055701]

5. Chrencik JE, Roth CB, Terakado M, Kurata H, Omi R, Kihara Y, Warshaviak D, Nakade S, Asmar-Rovira G, Mileni M et al.. (2015) Crystal Structure of Antagonist Bound Human Lysophosphatidic Acid Receptor 1. Cell, 161 (7): 1633-43. [PMID:26091040]

6. Contos JJ, Chun J. (1998) Complete cDNA sequence, genomic structure, and chromosomal localization of the LPA receptor gene, lpA1/vzg-1/Gpcr26. Genomics, 51 (3): 364-78. [PMID:9721207]

7. Contos JJ, Fukushima N, Weiner JA, Kaushal D, Chun J. (2000) Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior. Proc. Natl. Acad. Sci. U.S.A., 97 (24): 13384-9. [PMID:11087877]

8. Dancs PT, Ruisanchez É, Balogh A, Panta CR, Miklós Z, Nüsing RM, Aoki J, Chun J, Offermanns S, Tigyi G et al.. (2017) LPA1 receptor-mediated thromboxane A2 release is responsible for lysophosphatidic acid-induced vascular smooth muscle contraction. FASEB J., 31 (4): 1547-1555. [PMID:28069828]

9. Dubin AE, Bahnson T, Weiner JA, Fukushima N, Chun J. (1999) Lysophosphatidic acid stimulates neurotransmitter-like conductance changes that precede GABA and L-glutamate in early, presumptive cortical neuroblasts. J. Neurosci., 19 (4): 1371-81. [PMID:9952414]

10. Dubin AE, Herr DR, Chun J. (2010) Diversity of lysophosphatidic acid receptor-mediated intracellular calcium signaling in early cortical neurogenesis. J. Neurosci., 30 (21): 7300-9. [PMID:20505096]

11. Durgam GG, Virag T, Walker MD, Tsukahara R, Yasuda S, Liliom K, van Meeteren LA, Moolenaar WH, Wilke N, Siess W et al.. (2005) Synthesis, structure-activity relationships, and biological evaluation of fatty alcohol phosphates as lysophosphatidic acid receptor ligands, activators of PPARgamma, and inhibitors of autotaxin. J. Med. Chem., 48 (15): 4919-30. [PMID:16033271]

12. Estivill-Torrús G, Llebrez-Zayas P, Matas-Rico E, Santín L, Pedraza C, De Diego I, Del Arco I, Fernández-Llebrez P, Chun J, De Fonseca FR. (2008) Absence of LPA1 signaling results in defective cortical development. Cereb. Cortex, 18 (4): 938-50. [PMID:17656621]

13. Fischer DJ, Nusser N, Virag T, Yokoyama K, Wang Da, Baker DL, Bautista D, Parrill AL, Tigyi G. (2001) Short-chain phosphatidates are subtype-selective antagonists of lysophosphatidic acid receptors. Mol. Pharmacol., 60 (4): 776-84. [PMID:11562440]

14. Fukushima N, Ishii I, Habara Y, Allen CB, Chun J. (2002) Dual regulation of actin rearrangement through lysophosphatidic acid receptor in neuroblast cell lines: actin depolymerization by Ca(2+)-alpha-actinin and polymerization by rho. Mol. Biol. Cell, 13 (8): 2692-705. [PMID:12181339]

15. Fukushima N, Kimura Y, Chun J. (1998) A single receptor encoded by vzg-1/lpA1/edg-2 couples to G proteins and mediates multiple cellular responses to lysophosphatidic acid. Proc. Natl. Acad. Sci. U.S.A., 95 (11): 6151-6. [PMID:9600933]

16. Fukushima N, Shano S, Moriyama R, Chun J. (2007) Lysophosphatidic acid stimulates neuronal differentiation of cortical neuroblasts through the LPA1-G(i/o) pathway. Neurochem. Int., 50 (2): 302-7. [PMID:17056154]

17. Fukushima N, Weiner JA, Chun J. (2000) Lysophosphatidic acid (LPA) is a novel extracellular regulator of cortical neuroblast morphology. Dev. Biol., 228 (1): 6-18. [PMID:11087622]

18. Fukushima N, Weiner JA, Kaushal D, Contos JJ, Rehen SK, Kingsbury MA, Kim KY, Chun J. (2002) Lysophosphatidic acid influences the morphology and motility of young, postmitotic cortical neurons. Mol. Cell. Neurosci., 20 (2): 271-82. [PMID:12093159]

19. Heasley BH, Jarosz R, Lynch KR, Macdonald TL. (2004) Initial structure-activity relationships of lysophosphatidic acid receptor antagonists: discovery of a high-affinity LPA1/LPA3 receptor antagonist. Bioorg. Med. Chem. Lett., 14 (11): 2735-40. [PMID:15125924]

20. Hecht JH, Weiner JA, Post SR, Chun J. (1996) Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. J. Cell Biol., 135 (4): 1071-83. [PMID:8922387]

21. Heise CE, Santos WL, Schreihofer AM, Heasley BH, Mukhin YV, Macdonald TL, Lynch KR. (2001) Activity of 2-substituted lysophosphatidic acid (LPA) analogs at LPA receptors: discovery of a LPA1/LPA3 receptor antagonist. Mol. Pharmacol., 60 (6): 1173-80. [PMID:11723223]

22. Herr KJ, Herr DR, Lee CW, Noguchi K, Chun J. (2011) Stereotyped fetal brain disorganization is induced by hypoxia and requires lysophosphatidic acid receptor 1 (LPA1) signaling. Proc. Natl. Acad. Sci. U.S.A., 108 (37): 15444-9. [PMID:21878565]

23. Im DS. (2010) Pharmacological tools for lysophospholipid GPCRs: development of agonists and antagonists for LPA and S1P receptors. Acta Pharmacol. Sin., 31 (9): 1213-22. [PMID:20729877]

24. Ishii I, Contos JJ, Fukushima N, Chun J. (2000) Functional comparisons of the lysophosphatidic acid receptors, LP(A1)/VZG-1/EDG-2, LP(A2)/EDG-4, and LP(A3)/EDG-7 in neuronal cell lines using a retrovirus expression system. Mol. Pharmacol., 58 (5): 895-902. [PMID:11040035]

25. Kano K, Arima N, Ohgami M, Aoki J. (2008) LPA and its analogs-attractive tools for elucidation of LPA biology and drug development. Curr. Med. Chem., 15 (21): 2122-31. [PMID:18781939]

26. Kingsbury MA, Rehen SK, Contos JJ, Higgins CM, Chun J. (2003) Non-proliferative effects of lysophosphatidic acid enhance cortical growth and folding. Nat. Neurosci., 6 (12): 1292-9. [PMID:14625558]

27. Matas-Rico E, García-Diaz B, Llebrez-Zayas P, López-Barroso D, Santín L, Pedraza C, Smith-Fernández A, Fernández-Llebrez P, Tellez T, Redondo M et al.. (2008) Deletion of lysophosphatidic acid receptor LPA1 reduces neurogenesis in the mouse dentate gyrus. Mol. Cell. Neurosci., 39 (3): 342-55. [PMID:18708146]

28. Mirendil H, Thomas EA, De Loera C, Okada K, Inomata Y, Chun J. (2015) LPA signaling initiates schizophrenia-like brain and behavioral changes in a mouse model of prenatal brain hemorrhage. Transl Psychiatry, 5: e541. [PMID:25849980]

29. Ohta H, Sato K, Murata N, Damirin A, Malchinkhuu E, Kon J, Kimura T, Tobo M, Yamazaki Y, Watanabe T, Yagi M, Sato M, Suzuki R, Murooka H, Sakai T, Nishitoba T, Im DS, Nochi H, Tamoto K, Tomura H, Okajima F. (2003) Ki16425, a subtype-selective antagonist for EDG-family lysophosphatidic acid receptors. Mol. Pharmacol., 64 (4): 994-1005. [PMID:14500756]

30. Ohuchi H, Hamada A, Matsuda H, Takagi A, Tanaka M, Aoki J, Arai H, Noji S. (2008) Expression patterns of the lysophospholipid receptor genes during mouse early development. Dev. Dyn., 237 (11): 3280-94. [PMID:18924241]

31. Pedraza C, Sánchez-López J, Castilla-Ortega E, Rosell-Valle C, Zambrana-Infantes E, García-Fernández M, Rodriguez de Fonseca F, Chun J, Santín LJ, Estivill-Torrús G. (2014) Fear extinction and acute stress reactivity reveal a role of LPA(1) receptor in regulating emotional-like behaviors. Brain Struct Funct, 219 (5): 1659-72. [PMID:23775489]

32. Qian L, Xu Y, Simper T, Jiang G, Aoki J, Umezu-Goto M, Arai H, Yu S, Mills GB, Tsukahara R et al.. (2006) Phosphorothioate analogues of alkyl lysophosphatidic acid as LPA3 receptor-selective agonists. ChemMedChem, 1 (3): 376-83. [PMID:16892372]

33. Sattikar A, Dowling MR, Rosethorne EM. (2017) Endogenous lysophosphatidic acid (LPA1 ) receptor agonists demonstrate ligand bias between calcium and ERK signalling pathways in human lung fibroblasts. Br. J. Pharmacol., 174 (3): 227-237. [PMID:27864940]

34. Simon MF, Daviaud D, Pradère JP, Grès S, Guigné C, Wabitsch M, Chun J, Valet P, Saulnier-Blache JS. (2005) Lysophosphatidic acid inhibits adipocyte differentiation via lysophosphatidic acid 1 receptor-dependent down-regulation of peroxisome proliferator-activated receptor gamma2. J. Biol. Chem., 280 (15): 14656-62. [PMID:15710620]

35. Swaney JS, Chapman C, Correa LD, Stebbins KJ, Broadhead AR, Bain G, Santini AM, Darlington J, King CD, Baccei CS et al.. (2011) Pharmacokinetic and pharmacodynamic characterization of an oral lysophosphatidic acid type 1 receptor-selective antagonist. J. Pharmacol. Exp. Ther., 336 (3): 693-700. [PMID:21159750]

36. Swaney JS, Chapman C, Correa LD, Stebbins KJ, Bundey RA, Prodanovich PC, Fagan P, Baccei CS, Santini AM, Hutchinson JH et al.. (2010) A novel, orally active LPA(1) receptor antagonist inhibits lung fibrosis in the mouse bleomycin model. Br. J. Pharmacol., 160 (7): 1699-713. [PMID:20649573]

37. Terakado M, Suzuki H, Hashimura K, Tanaka M, Ueda H, Kohno H, Fujimoto T, Saga H, Nakade S, Habashita H et al.. (2016) Discovery of ONO-7300243 from a Novel Class of Lysophosphatidic Acid Receptor 1 Antagonists: From Hit to Lead. ACS Med Chem Lett, 7 (10): 913-918. [PMID:27774128]

38. Weiner JA, Chun J. (1999) Schwann cell survival mediated by the signaling phospholipid lysophosphatidic acid. Proc. Natl. Acad. Sci. U.S.A., 96 (9): 5233-8. [PMID:10220449]

39. Weiner JA, Fukushima N, Contos JJ, Scherer SS, Chun J. (2001) Regulation of Schwann cell morphology and adhesion by receptor-mediated lysophosphatidic acid signaling. J. Neurosci., 21 (18): 7069-78. [PMID:11549717]

40. Yang AH, Ishii I, Chun J. (2002) In vivo roles of lysophospholipid receptors revealed by gene targeting studies in mice. Biochim. Biophys. Acta, 1582 (1-3): 197-203. [PMID:12069829]

41. Yung YC, Mutoh T, Lin ME, Noguchi K, Rivera RR, Choi JW, Kingsbury MA, Chun J. (2011) Lysophosphatidic acid signaling may initiate fetal hydrocephalus. Sci Transl Med, 3 (99): 99ra87. [PMID:21900594]

42. Zhang H, Xu X, Gajewiak J, Tsukahara R, Fujiwara Y, Liu J, Fells JI, Perygin D, Parrill AL, Tigyi G et al.. (2009) Dual activity lysophosphatidic acid receptor pan-antagonist/autotaxin inhibitor reduces breast cancer cell migration in vitro and causes tumor regression in vivo. Cancer Res., 69 (13): 5441-9. [PMID:19509223]

Contributors

Show »

How to cite this page

Aaron Frantz, Yun C. Yung, Jerold Chun.
Lysophospholipid (LPA) receptors: LPA1 receptor. Last modified on 20/02/2018. Accessed on 20/07/2018. IUPHAR/BPS Guide to PHARMACOLOGY, http://guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=272.